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The motions of a floating slender torus 
By J. N. NEWMAN 

Department of Ocean Engineering, Massachusetts Institute of Technology, Cambridge 

(Received 17 March 1977)  

The motions of a floating torus oscillating in response to incident waves are analysed 
under the assumptions that the incident wavelength is comparable with the radius of 
the body section and small compared with the larger radius of the torus. This problem 
serves to illustrate certain features of the strip theory for ship motions, but the axisym- 
metric geometry and absence of body ends greatly simplify the analysis. Matched 
asymptotic expansions are used, with the inner solution close to the body section com- 
posed of suitable radiation and scattering problems for the two-dimensional circular 
cylinder. Resonant standing-wave modes in the internal basin have a singular effect 
upon the hydrodynamic forces acting on the body, and its response to incident waves. 

1. Introduction 
For ships and other floating elongated bodies, it is common to analyse the oscillatory 

motions in waves from a slender-body approximation, based on the disparate magni- 
tudes of the body length and transverse dimensions. This approach has developed in 
part from the classical elender-body theory of aerodynamics, with the added complex- 
ity of free-surface waves. The characteristic wavelength is specially relevant, in rela- 
tion to the two disparate length scales of the body. If the wavelength h is comparable 
with the body length L, the wave effects are three-dimensional but free-surface effects 
are absent from the ‘inner’ flow near each section of the body. Alternatively, if the 
wavelength is comparable with the transverse body dimensions and small compared 
with L,  a strip theory results with the leading-order inner solution at  each body section 
that of a two-dimensional wave-body interaction. A recent survey of this topic isgiven 
by Ogilvie (1977). 

From the practical standpoint the short-wavelength strip-theory regime is most 
useful, particularly for ships moving forwards, for which the Doppler shift can sig- 
nificantly increase the frequency w of oscillations. Moreover, the vertical motions are 
resonant a t  natural frequencies which can be estimated by equating the hydrostatic 
restoringforce to the inertial force, where the latter is the product of w2 and the effective 
mass. Since both forces are proportional to the length, the resonant frequencies and 
wavelengths are governed only by the transverse dimensions of the body. From dimen- 
sional analysis it follows that resonance will coincide with the short-wavelength regime 
where h is comparable with the transverse body dimensions. 

In  the short-wavelength regime the body ends are of singular importance, particu- 
larly in the scattering of incident plane waves. More generally, ‘end effects’ are a 
source of inaccuracies or inconsistencies in slender-body theories which often are 
ignored. Justification usually rests with an assumption that the body ends are suitably 
pointed, but the geometric restrictions imposed by this assumption are rarely stated, 
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End effects are absent in the case of a slender body whose ‘longitudinal’ axis is a 
closed curve without ends. The canonical example is a torus, with circular sections of 
minor radius a, centred upon a larger circle of major radius c. The torus is slender in the 
asymptotic sense if a < c. The hydrodynamic characteristics of such a body shape are 
simplified not only by the lack of end effects, but also by the axisymmetric geometry. 
In the case of an unbounded ideal fluid, the slender torus has been analysed by Wu & 
Yates (1976) to establish the leading-order effects in slender-body theory associated 
with a curvilinear body axis. 

The present paper treats the problem of a slender torus floating on the free surface, 
in the presence of incident plane waves. The short-wavelength regime is considered, 
where h/a = O( I )  and h/c < 1. This problem is analogous to that of the usual strip 
theory for ship motions, but the axisymmetric geometry and absence of body ends 
permit a relatively simple solution in terms of the corresponding two-dimensional 
solution for a floating circular cylinder. 

Our results can be applied to any large floating structure where the buoyant volume 
is concentrated along the periphery of a closed curve. Possible applications might be to 
a circular floating breakwater or oil-containment barrier, but no existing structures of 
this type are known. Toroidal buoys of small major radius are used commonly for 
oceanographic purposes, but since h 9 c the buoy moves in a quasi-hydrostatic manner. 
Thus there are no direct practical applications of the present results to the author’s 
knowledge. 

In the presence of plane progressive incident waves of small amplitude, the torus will 
perform small oscillatory motions with the same frequency in the horizontal direction 
(surge), in the vertical direction (heave) and about an axis perpendicular to these two 
directions (pitch). In  the linear theory this motion can be decumposed into three 
radiation problems of forced oscillations in each mode, in otherwise calm water, plus a 
diffraction problem of waves incident upon the stationary body. Combining the hydro- 
dynamic pressure forces from each of these problems yields linearized equations of 
motion for the oscillations of the body in waves. 

The three radiation problems are solved by simple applications of the method of 
matched asymptotic expansions. Known results for the oscillatory motion of a floating 
circular cylinder are used to represent the locally two-dimensional flow near the body 
in the inner region. Two outer regions, consisting of the interior ‘basin’ enclosed by the 
torus and the exterior domain, require separate three-dimensional analyses. Matching 
is applied to the amplitudes and phases of the waves propagating in the two overlap 
regions between these three separate domains. In  view of the assumptions that 
a/A = O( I )  and a/c < 1, suitable overlap regions exist where the distance from the body 
surface is large compared with the wavelength and minor radius a but small compared 
with the major radius c. 

An important feature of the outer flow in the interior basin is the presence of radiated 
waves which propagate across the basin, and which appear as incident waves on the 
opposite side of the torus. The same feature is displayed in a similar two-dimensional 
analysis carried out by Ohkusu (1974) for a ‘catamaran’ configuration consisting of 
two long parallel cylinders, and in an exact numerical solution of the same problem by 
Wang & Wahab (1971). 

The superposition of radiated waves travelling across the basin in opposite directions 
creates a circular standing-wave system. Since the transmission coefficient beneath the 
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- 2c-q 
FIGURE 1. Co-ordinate system and geometry of the torus in a section 8 = constant. 

submerged portion of the body generally is small, these standing-wave modes are 
highly resonant. I n  this respect the problem at hand is analogous to the ‘bottomless 
harbour ’ treated by Garrett (1970). 

As in the two-dimensional analysis of Ohkusu, we rely on Green’s theorem to relate 
the radiation and diffraction problems. Thus, from the Haskind relations, the exciting 
force due to incident waves can be evaluated in terms of the far-field wave amplitude 
of the radiation problem. The matching procedure is greatly facilitated by the use of 
additional relations, between the reflexion and transmission coefficients of the scatter- 
ing problem and the far-field phase of the radiated waves. Indeed, the existence 
of these additional relations can be inferred by the superposition of radiation and 
diffraction problems, as noted in the derivation by Newman (1975). An earlier 
derivation of the same results by Bessho (1965) has been brought to the author’s 
att,ent,ion by Professor Ohkusu. 

Circular cylindrical co-ordinates ( r ,  8,  z )  are employed, with z = 0 the plane of the 
undisturbed free surface and z positive upwards, as shown in figure 1. The direction 
0 = 0 is chosen to coincide with the incident-wave propagation. The body is formed by 
rotating about the vertical ( z )  axis a circle of radius a centred in the plane z = 0 a t  a 
distance r = c from the vertical axis, where a < c .  Deep water is assumed for simplicity; 
the extension to finite depths is straightforward. 

A subscriptj is used to denote translation (j = 1 , 2 , 3 )  and rotation (j = 4 , 5 ,  6 )  with 
respect to the Cartesian co-ordinates x1 = r cos 0, xz = r sin 0, x3 = z. With this con- 
vention the three radiation problems to be considered are surge ( j  = I ) ,  heave (j = 3) 
and pitch ( j  = 5 ) .  The axisymmetric case of forced heaving motion is treated in $ 2, and 
the corresponding derivations for surge and pitch are outlined in $53-4. The exciting 
force and moment are analysed in 5 5, and these are used to form equations of motion 
for the body response to  the incident waves. 

A complementary problem for the floating torus is that of Davis (1975), who treats 
forced vertical motions with the ratio a/c arbitrary, but with the wavelength short 
compared with both radii. I n  $ 2, it will be shown that the present results are consistent 
with those obtained by Davis (1975) in the mutual limit h 4 a < c.  
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2. Forced heaving motions 

ing flow is axisymmetric, and may be described by a velocity potential of the form 
The body is given a vertical motion with complex velocity v3 = iut3 eiwt. The result- 

$ = Re (213 $3). (2.1) 

Here $3 is governed by Laplace’s equation in the fluid domain, subject to  the boundary 
condition 

a$,/an = n, (2.2) 

on the body surface. The unit normal vector n is defined as positive into the body, and 
n, denotes its vertical component. 

The linearized free-surface condition 

K + ~  - a$,/az = 0 (2.3) 

holds on the plane z = 0, where K = 0219. At large distances exterior to the body, a 
radiation condition is imposed in the form 

43 g f,(Kr)-lexp(Kx-iKr). (2.4) 

Thus t,he waves are outgoing, with complex amplitude proportional to the constant f 3. 

The expression defined by (2.4) satisfies Laplace’s equation to leading order for large 
Kr, as well as the boundary conditions of the outer problem exterior to the body. Thus 
(2.4) is the complete outer solution in the exterior region. Physically, this is the asymp- 
totic form of a simple axisymmetric system of outgoing ring waves, as observed many 
wavelengths from the disturbance. 

The corresponding outer solution in the basin interior to the body can be obtained by 
the method of separation of variables. Typical solutions involve the products of Bessel 
functions of argument kr and exponential functions of argument kz.  Bessel functions 
of the second kind are excluded since the solution is regular at r = 0; for the axisym- 
metric heaving problem the order of the Bessel function is zero. Since the solution must 
satisfy the free-surface condition (2.3) and vanish for large depths, the z dependence is 
identical to (2.4) and the separation parameter k = K .  Thus the complete outer solu- 
tion in the interior basin is given by 

43 = a3 J0(W eKz, (2 .5 )  
where u3 is a complex constant. 

The inner region close t o  the body section extends outwards on both the interior 
and the exterior side over a distance of a few wavelengths. In this domain, Kr Kc is 
asymptotically large, but K ( r  - cl = O( 1). Here the three-dimensional Laplace equa- 
tion reduces to a two-dimensional form, in planes 0 = constant. Formally, starting 
with Laplace’s equation in cylindrical co-ordinates, 

Since r = O(c), whereas (a/&, a/&) = O(u-l), the neglected terms in (2.6) are of order 
n/c  and a2/c2, respectively, in comparison with those ret,ained. 
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I n  the inner region it is convenient to employ Cartesian co-ordinates ( x , z )  in the 
plane 0 = constant, with the origin at the centre of the body section. Thus x = r - c, 
and the governing equation is the two-dimensional Laplace equation: 

a24lax2 + a24/az2 = 0. (2.7) 

The boundary conditions (2.2 and 2.3) are unchanged in terms of the inner frame of 
reference; thus the inner problem is that of a heaving circular cylinder of radius r = a. 

Radiation conditions for the inner solution are determined by matching with the 
outer solutions on both sides of the body section. Exterior to the torus, the inner solu- 
tion is matched with the inner limit of the outer solution (2.4): 

#3 r f3(Kc)-i exp (Kz - iKr) 

=f3(Kc)-iexp (Kz-iKx-iKc). (2.8) 

Thus, as one might anticipate, the appropriate radiation condition for the inner solu- 
tion on the exterior side of the torus is an outgoing two-dimensional wave motion. 

The matching procedure in the interior region involves similar arguments. Using the 
asymptotic expansion of the Bessel function for large values of its argument, the inner 
limit of the outer solution (2.5) is obtained in the form 

#3 r a3(2nKr)-t {exp (Kz + iKr - tin) + exp (Kz - iKr + bin)) ( 2 . 9 ~ )  

N - a3( 2nKc)-3 {exp [Kz + i K ( x  + c) - in] + exp [Kz - X ( x  + c) + tin]), (2.9 b )  

where (2.9b) is valid in the overlap region - Kc < K(x-c) < - 1. 
Equation (2.9 b )  represents a two-dimensional standing wave, the components of 

which can be associated with outgoing waves generated by the body section and in- 
coming waves generated on the opposite side of the torus which propagate across the 
interior region. Thus the radiation condition on the inner solution for x -+ - co is given 
by (2.9). 

The inner problem is specified by the two-dimensional Laplace equation (2.7), the 
body boundary condition (2.2), the free-surface condition (2.3) and by the radiation 
conditions (2.8 and 2.9). Since (2.9) includes an incoming wave from x = - co, the inner 
solution can be composed of a suitable linear combination of a scattering problem (with 
the same incident wave and the body fixed) and a radiation problem (with the appro- 
priate body motion and no incident waves). 

Defining the inner scattering problem in the conventional manner for incident waves 
of unit amplitude, the corresponding potential Qs satisfies the boundary condition 

aaqan = o (2.10) 

on the body surface. At large distances from the cylinder, Qs is given asymptotically in 
the forms 

[exp (Kz  - i K x )  + R exp (Kz + iKx) as x+ - 00, (2.11) 

lTexp(Kz-iKx) as x++co. (2.12) 
Qs z 

Here R and T are the complex reflexion and transmission coefficients of the two- 
dimensional scattering problem for waves incident from - co. 
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In  the inner radiation problem for the potential @,, the cylinder oscillates with unit 
vertical velocity, radiating outgoing waves in a symmetric manner about x = 0. Thus, 
on the body surface, 

a@,/& = n,, (2.13) 

and at large distances from the cylinder, 

@, z B’,exp(Kx-iKlxl), (2.14) 

where B’, is a complex constant. 
The complete solution in the inner region is 

4 3  = @,+A,@,,  (2.15) 

where A ,  is a complex constant determined from (2.9) and (2.11) as 

A,  = u3(2nKc)-t exp ( - iKc + kin). (2.16) 

Comparison of (2.8, 2.9, 2.11, 2.12 and 2.14) gives the outgoing-wave relations 

F, + RA, = u3(2nKc)-8exp (iKc - tin), 

F, + TA, = f,(Kc)-+ e--iKc. 

(2.17) 

(2.18) 

Combining (2.16 and 2.17) and solving for A,, it follows that 

A ,  = - Ps(R + ieziKe)-l. (2.19) 

The last equation determines the amplitude of the incident wave in the inner solution 
(2.15). 

The hydrodynamic pressure in the inner region is obtained by substituting the 
potential (2.15) in the linearized Bernoulli equation 

p = -imp#. (2.20) 

Integration over the body section gives the vert’ical pressure force, per unit length 
along the torus, and the total three-dimensional force follows by integration around the 
circle of radius c. Thus the vertical force due to the hydrodynamic pressure associated 
with vertical heaving motion of unit velocity is obtained in the form 

(2.21) 

E - b,, - iwm,, . 

Here S denotes the submerged surface of the torus, C is the profile of the body section 
in the plane 8 = constant, b,, is the three-dimensional damping coefficient, which is in 
phase with the velocity of the torus, and m,, is the added mass. 

The contribution from the radiation potential in (2.21) is the two-dimensional force 
for the heaving body section: 

- iwp @, n,dl E - B, - iwM,,. (2.22) 
$c 

The remaining contribution from the scattering potential @, is proportional to the 
wave-exciting force acting on the fixed two-dimensional cylinder in the presence of an 
incident wave system. This can be related to the radiation solution by the Haskind 
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relations (cf. Newman 1976, equation 4 5 ) .  Accounting for the time dependence eiWt, it 
follows that 

-iJcQBnGdl = lim {Q,exp(-Kz-iKx)) = F,. (2 .23 )  
x+- m 

Combining (2.21-2.23) and using (2 .19 ) ,  the total vertical force on the torus is 

b,, + iwm,, = Bnc(B,, + iwM,) + 2nwpcF,2(R + ieziKc )- l. (2 .24 )  

From energy conservation, the damping parameter B,, is given by 

B33 = wPIF312 (2 .25 )  

(ibid., equation 31a). Moreover, the reflexion coefficient R can be related to the argu- 
ments of F, and the corresponding sway-induced radiation wave amplitude Fl by the 
relation (ibid, equation 5 2 ;  see also Newman 1975) 

R = - i(F,/F: + Fl/F:) = - cos aeia, 
where 

= argFl T argF,. 

(2 .26 )  

(2 .27 )  

Combining (2.24)-(2.26),  we obtain an expression for the three-dimensional vertical 
force in the form 

b,, + iwm,, = 2nc(B,, + iwM,,) - 2ncB,, ei(p-a)(cosaeiP- ie2iKC)-l. (2 .28 )  

With the definition 
y = 2 K ~ - p - + n ,  (2 .29 )  

it follows that 
b,, + iom,, = 2nc(B,, + iwM,,) - 2ncB,, e-ia(cosa + eiY)--l. (2 .30 )  

Thus the three-dimensional damping and added-mass parameters of the torus have 
been related to the corresponding parameters for the two-dimensional cylinder and the 
two angles ct and p which are also properties of the two-dimensional radiation prob- 
lem. The multiplicative factor 2nc is the arc length over which the two-dimensional 
force of the inner solution is acting; except for this factor, the only effect of the torus 
radius c is upon y, which accounts for the phase of the waves propagating across the 
interior region. 

1, T -+ 0 and cos a = 1 RI -+ 1. Excluding the resonant 
frequencies y = n ( 2 n  + I ) ,  the damping and added-mass components of (2 .30 )  are given 
by the asymptotic approximations 

In the limiting case Ka 

b33 2 ncB,, 2 ( l 6 / n )  (Ka)-"mw, (2 .31 )  

m,, z 2ncM3, [ l  - 4 / ( 3 n K a ) ]  m, (2 .32 )  

where m = n2pa2c is the mass of fluid displaced by the torus and the high-frequency 
approximations for B,, and M,, are derived by Ursell (1953).? The added mass (2 .32 )  
can be deduced from a simple strip theory, as the prcduct of the two-dimensional 
added mass and the circumference of the torus. The damping coefficient (2 .31 )  is 
reduced by one-half of the corresponding strip-theory result, since the waves generated 

t The higher-order term retained in (2.32) is justified since T = O ( ( K C ~ ) - ~ ) ,  as shown by 
Ursell ( 1961 ). 
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FIGURE 2. Heave damping coefficient for a torus with a/c = 0.2. The dashed line denotes the 
corresponding two-dimensional coefficient for a circular cylinder, and the arrow denotes a peak 
value equal to 31. 

Ku 
FIGURE 3. Heave added-mass coefficient for a torus with a/c = 0.2. The dashed line denotes the 
corresponding two-dimensional coefficient for the circular cylinder, and the arrows denote peak 
values as shown. 
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on the interior side of the torus are prevented from radiating to infinity. I n  the limit as 
Ka-t co equation (2.31) and the leading term of (2.32) are consistent with the asympto- 
tic theory of Davis (1975) for a non-slender torus if, in Davis’ results, alc < 1.  

More generally, the damping and added mass can be computed from (2.30) using the 
corresponding coefficients and phase angles of the bwo-dimensional problem for an 
oscillating circular cylinder. The results shown in figures 2 and 3 have been computed 
in this manner, using two-dimensional data provided by Lee (private communication, 
1976; also 1977). Figure 2 shows the damping coefficient for a torus of slenderness ratio 
a/c = 0.2, as well as the corresponding two-dimensional damping coefficient. Similar 
results for the added-mass coefficients are shown in figure 3. Both parameters display 
the effects of highly tuned resonant modes in the interior basin, which become increas- 
ingly sharp as the frequency increases and the transmission coefficient is decreased. The 
damping coefficient rises sharply, in the vicinity of each resonance, and then decreases 
to zero. The added mass changes abruptly from a large positive value to a large negative 
value in the same frequency range. The singular nature of the results shown in figures 
2 and 3 is increased for smaller values of alc, where the resonant modes are more densely 
spaced in terms of the parameter Ka. Increasing Ka, with alc fixed, decreases the 
transmission coefficient T and increases the resonant tuning. 

3. Surge motions 

q5 = v, 
For forced horizontal motion, with complex velocity v,, the velocity potential 

is subject to  the boundary condition 

@,/an = n,cos8 (3.1) 

on the body. Thus the potential 9, will have angular dependence proportional to cos 8. 
This is the principal difference relative to the axisymmetric heave problem. 

In  the outer region exterior to the torus (2.4) is replaced by 

g f, cos B(Kr)-$ exp (Kz - iKr) ,  

= a, cos 8 Jl(Kr) eKz. 

(3.2) 

and in the outer region interior to the torus (2.5) is replaced by 

(3.3) 

The inner solution is governed by the two-dimensional Laplace equation (2.7) and 
the body boundary condition (3.1). Exterior to the torus the inner solution is matched 
t o  the inner approximation of (3.2): 

q51 z f,cos8(Kc)-~esp(Kz-iKz-iKc). (3.4) 

Interior to the torus, the inner solution is matched to the inner limit obtained from 
(3.3) and analogous to (2.9): 

2 - ia, cos 6(2nKc)-t (exp [Kz + iK(x  + c )  - $in] 
- exp [Kz - iK(x  + c )  + 4in]>. (3.5) 

The appropriate inner solution is written in the form 

q5, = (cD,+A,qJcos8, ( 3 4  



730 J .  N .  Newman 

where @, is the two-dimensional radiation solution for horizontal oscillations with unit 
velocity. From symmetry considerations, the far-field waves of this two-dimensional 
potential are of the form 

@, +F,exp(Kz-iK(x/) as x - f  +a. (3.7) 

The incident wave A,  is determined by matching the incoming wave components in 
(3.5) and (3.6). Thus it follows that 

(3.8) 

(3.9) 

A ,  = ia1(2nKc)-3 exp ( - iKc + tin). 

- F, + RA, = - ia1(2n-Kc)-3 exp (iKc - air), 

Matching the outgoing wave components gives the relations 

F, + TA,  = Fl(Kc)-3 e-iKc. (3.10) 

Combining (3.8 and 3.9), the incident wave amplitude is given by 

A ,  = Fl(R - ie2iKc)-1. (3.11) 

The damping and added mass follow as in the heave problem; here the factor cos28 
must be recalled before integrating around the torus. Thus, in place of (2.30) it follows 
that 

(3.12) 

where y is defined by (2.29). 
Calculations analogous to those shown in figures 2-3 can be performed without 

difficulty. The results are similar, but with the zerosof the damping coefficient preceding 
the adjacent peaks, and with the resonant values of Kc shifted by 7r. The two-dimen- 
sional surge added mass is well behaved for Ka -f 0, with the (rigid free-surface) limit 
M,,+ 47rpa2. Thus, to leading-order, 

m,, z g7rzpazc = $m as Ka -f 0, (3.13) 

in agreement with the result given by Wu & Yates (1976) for a slender torus in an 
unbounded fluid. I n  the high-frequency limit, results similar to (2.31) and (2.32) can be 

b,, + iwm,, = rc(B,, + iuM,,) - ncB,,eia(cos a - eiY)--l, 

- 

derived using the approximations 
311 4pu{K2, 

M,, 2 -paz[1-"(?+')1 2 
7r Ka 9 371 

(3.14) 

(3.15) 

for the two-dimensional damping and added mass.? 

t The high-frequency approximations (3.14 and 3.15) are not so well established as the corres- 
ponding results for heave used in (2.31 and 2.32). The damping coefficient (3.14) can be obtained 
directly from energy conservation using the result given by Davis (1976, $2) for the radiated 
wave amplitude. The added mass (3.15) can be derived from Green's theorem using the procedure 
which is outlined for heave by Rhodes-Robinson (1971, p. 316) and Davis (1975, equation 1.10); 
the only modification required here is to replace the limiting infinite-€requency potential for 
heave by the corresponding result for sway. 
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4. Pitch motions 
Here a rotational velocity v, about the axis normal to the plane 0 = 0 and passing 

through the origin r = z = 0 is given. The resulting velocity potential $ = v5$, is 
subject to  the boundary conditien 

(4.1) @,/an = (zn, - m,) cos 0 

on the body surface. This implies, as in 5 3, a solution proportional to cos 0. Only the 
direction cosine n, appears in the leading-order boundary condition; hence the inner 
solution involves the heave potential @,. Physically, pitching motion of the slender 
torus appears locally as a heave motion with vertical velocity equal to the product of 
the pitch angular velocity and the radius from the pitch axis. 

Outer solutions similar to (3.2) and (3.3) are applicable, with (3.4), (3.5) and (3.8) 
unchanged except for the subscript 5 in place of 1.  The inner solution is identical to 
that derived in 5 2, except for a change in the multiplicative factors. From matching 
the outgoing waves, it follows that 

F, + RA, = - ia5(27rKc)-3 exp (iKc - tin), (4.2) 

(4.3) 

(4.4) 

On computing the pressure moment as in (2.20)-(2.23) and using (2.25)-(2.27), the 
three-dimensional damping and added moment of inertia follow in the form 

b,, + iwm,, = nc3(B,, + iom,,) - nc3B3,e-ia(cos a - eiY)--l. (4.5) 

Once again, the results of computations are similar to those shown in figures 2 and 3, 
but with a phase shift of 7r in the value of Kc a t  which resonance occurs. 

5. The scattering problem 
Here the body is stationary in the presence of incident waves, which propagate in the 

direction 8 = 0. If the incident wave's amplitude is denoted by A ,  its velocity potential 
is given by the real part of 

(gA/w) exp (Kz - iKr cos 0 + iwt) = A$o e i w t .  (5.1) 

4 = Aei""$o+$d), (5.2) 

The total potential can be written in the form 

where $d denotes the diffraction potential due to the body. The boundary condition on 
the body is that the normal velocity should vanish, and thus 

a$,/& = - &$,/an = - w(n, - in, cos 0) exp [Kz - iK( z  - c) cos 61. (5.3) 

In  all other respects the diffraction potential is governed by the same boundary-value 
problem as the I d a t i o n  potentials Qi. 

Despite the biinilar boundary-value problems for the diffraction and radiation 
potentials, the solution of the diffraction problem generally is more difficult. This is 
attributed partially to the boundary condition (5.3), in particular the exponential 
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factor therein, whichisabsent from (2.2) and (3.1).  In  the present case, however, a more 
significant complication is the lack of axisymmetry, or of the simple angular depend- 
ence proportional to cos 8. This complication can be overcome by a Fourier-Bessel 
expansion of the incident-wave potential (5.1), as carried out for example by Garrett 
(1970). That approach is expedient for the ultimate computation of the exciting force 
and moment, which depend exclusively on the terms with n = 0, 1 of the Fourier 
expansion in COB no. 

Alternatively, the need to consider the scattering problem can be circumvented 
completely by using the three-dimensional Haskind relations to compute the exciting 
force and moment, and this simpler approach will be adopted below. First, however, it 
is instructive to consider briefly the direct solution of the diffraction problem posed 
above, following the approach used for the radiation problem in $ 5  2-4. This diversion 
emphasizes the distinction of the torus, relative to a slender body with straight axis 
and finite length. 

In  a plane 8 = constant, (5.3) is the boundary condition for diffraction of a plane 
wave by a two-dimensional circular cylinder. The angle between the incident-wave 
crests and the cylinder axis is 8, and the phase of the incident wave is Kc cos 8. In  this 
respect, the inner problem is that of scattering of an oblique incident wave by a two- 
dimensional cylinder. The angle of incidence varies slowly along the torus, but since 
Kc S 1 the phase is a rapidly varying function. 

The inner solution for the diffraction potential can be approximated as the product 
of a slowly varying function of 8 and the oscillatory phase factor exp(iKc cos 8). This 
inner solution is governed by the two-dimensional wave equation 

(a2/ax2 + a2/az2 - K2 sin2 8) CD = 0 (5.4) 

in planes normal to the body section. The resulting local force vector acting on the 
body can be expressed in the form f(8)exp ( ~ K c c o s ~ ) ,  where f(8) is slowly varying. 
Integrating around the torus, the total exciting force is 

N - c(Zn/Kc)-d[f(O) exp (iKc - )in) +f(n) exp ( - iKc + )n)]. (5.5) 

Here the stationary-phase approximation is used, on the assumption that Kc 9 1. The 
principal contributions to the exciting force are from the points on the body where the 
wave is locally incident from abeam, and where the wave equation (5.4) reduces to the 
Laplace equation. Thus the complexityof the waveequation doesnot affect the exciting 
force to leading order in the large parameter Kc. 

In the analogous scattering problem for a long slender straight body, of length L, the 
angle 8 is fixed. The inner solution is oscillatory along the body length and governed by 
the wave equation (5.4) with constant wavenumber K cos 8. Excluding the case of beam 
waves (cos0 = O ) ,  the local exciting force is oscillatory along the length, and the inte- 
grated force is small owing to cancellation; from the Riemann-Lebesque lemma the 
total exciting force can be estimated as the body mass times a factor, of order (KL)-1, 
which depends solely on the body shape near the ends. If the body is pointed, the 
characteristic length in the inner solution tends to zero at the ends, and the (suitably 
non-dimensionalized) wave equation reduces to the Laplace equation at these points. 
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Once again the leading-order exciting force is dominated by an inner solution governed 
by the Laplace equation, but for entirely different reasons. 

A complete inner solution of the scattering problem for the torus requires that, a 
radiation condition on the inside of the body be derived from the inner limit of the outer 
solution in the interior basin. Instead of pursuing this matter here, we adopt the alter- 
native approach t'o the exciting force and moment based on the three-dimensional 
Haskind relations. 

In general, the complex amplitude X i  ( j  = 1, . . . , 6 )  of the exciting force or moment is 
related to the wave amplitude radiated in the direction opposite to the incident wave 
by forced oscillations in the j t h  mode without incident waves. Thus, for the incident 
wave (5.1), 

Xi = (pgA/K) (2n)t e-tirfi(n) (5.6) 

(cf. Newman 1976, equation 45). The analogous expression for the two-dimensional 
case is (2.23). The radiated wave amplitudes fj are defined for 0 = 0 by the matching 
conditions (2.18), (3.10) and (4.3). Since the parameters on the left sides of these equa- 
tions are O( 1) in terms of the inner solution, it follows from (5 .6 )  that the ratio of the 
wave-exciting force to the body mass is of order (Kc)-*, in agreement with the qualita- 
tive result (5.5). The corresponding result for the exciting moment, non-dimensional- 
ized in terms of the polar moment of inertia of the body mass, is of order (Kc)-j. 

The radiated wave energy in each forced-motion problem is proportional to 1 f j I 2 ,  
and can be related to the corresponding damping coefficient by energy conservation. 
Thus the magnitude of the exciting force (5.6) is proportional to the square root of the 
damping coefficient bji, It follows that the exciting-force components vanish at  the 
same frequencies as the damping coefficients. 

6. Body motions in waves 
The body motions in waves can be determined from equations of motion relating the 

total pressure force to the product of the body mass m and its acceleration. There are 
no coupling effects between the three (linearized) modes of surge, heave and pitch, 
assuming the origin is located at  the centre of the torus. Thus, for heave, the complex 
amplitude c3 eiot = v,/iw follows from the linear equation of motion 

[ - u2(m3, + m) + iwb,, + 4npgacI E3 = X,. (6.1) 

The last term in the square brackets in the hydrostatic restoring force, which is pro- 
portional to the water-plane area 4nac. Similar equations apply for surge, where the 
hydrostatic term is deleted, and for pitch, where the body mass m is replaced by the 
moment of inertia and the water-plane area is replaced by the second moment 2nac3. 

The magnitude of the body response in each mode can be calculated without diffi- 
culty from the results derived in $0 2-4, with the results shown in figure 4. Each mode 
of body motion vanishes at  the zeros of the respective damping coefficients, owing to 
vanishing of the corresponding exciting force, as anticipated in the closing paragraph 
of $5. At intermediate values of the frequency parameter resonant peake occur when 
the sum of the real terms in the square brackets in (6.1) vanishes; since the added-mass 
coefficients take on negative values as shown in figure 3, two closely spaced resonant 
peaks of the body motion occur in each frequency regime where the standing waves of 
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the internal basin are resonant. These resonant body motions do not depend on the 
existence of a hydrostatic restoring force or ‘spring constant’ as in conventional 
second-order oscillators or floating bodies with positive-definite added-mass coeffi- 
cients, nor are the resonant frequencies limited in number. 

At very low frequencies the results shown in figure 4 are invalid, because Kc is not 
large. Thus the present results for the oscillatory motions tend to infinity at  small 
values of Ka, whereas in an exact three-dimensional treatment, or in a three-dimen- 
sional slender-body approach where Kc = O( l), the low-frequency response is domi- 
nated by hydrostatic effects. 

7. Discussion 
As an example of a slender floating body in waves, the torus is unique in several 

respects. The axisymmetric geometry is a major simplification, which enables a short- 
wave asymptotic theory to be derived from simple matching arguments. The results 
depend principally upon the two-dimensional damping and added-mass coefficients of 
the circular section, and upon the phase angles of the radiated waves for the same two- 
dimensional body. Extension to other sectional shapes is straightforward, as is the 
generalization to finite fluid depth. 
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The absence of body ends and the curved form of the axis are significant, particu- 
larly in the scattering problem. The presence of an interior basin, with associated 
standing-wave modes, has a dominant effect on the hydrodynamic characteristics of the 
torus. In  the neighbourhood of the resonant standing-wave frequencies the damping 
and added mass oscillate rapidly, and the added mass becomes negative. The body 
motions in waves are affected in a corresponding manner, as shown in figure 4. 

These features may be modulated significantly by the effects of viscosity and non- 
linearity, both of which are neglected. Our results are further restricted to the short- 
wavelength domain Kc 3 1, and are not valid as Ka-tO. A complementary slender- 
body theory can be developed for the case where Kc = O(l ) ,  following the ‘slender 
ship ’ theory which has been studied by various authors; the work of Ureell(l962) is 
relevant for an axisymmetric body. From this complementary approach one can derive 
results for a slender torus which are uniformly valid as Ka + 0. These can be combined 
with the present analysis to obtain a composite theory, along the lines suggested by 
Maruo (1970) for a conventional ship hull. 
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